
Let Google Index Your Media Fragments

Yunjia Li,Mike Wald and Gary Wills
School of Electronics and Computer Science

University of Southampton
UK

{yl2,mw,gbw}@ecs.soton.ac.uk

ABSTRACT
Current multimedia applications in Web 2.0 have generated
a massive amount of multimedia resources, but most search
results for multimedia resources still focus on the whole re-
source level. Media fragments expose the inside content of
multimedia resources for annotations, but they are yet fully
explored and indexed by major search engines. W3C has
published Media Fragment 1.0 as a standard way to describe
media fragments on the Web. In this proposal, we make use
of Google’s Ajax Application Crawler to index media frag-
ments represented by Media Fragment URIs. Each media
fragment with related annotations will have an individual
snapshot page, which could be indexed by the crawler. Ini-
tial evaluation has shown that the snapshot pages are suc-
cessfully fetched by Googlebot and we are expecting more
media fragments to be indexed using this method, so that
the search for multimedia resources would be more efficient.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Audio, Video
and Hypertext Interactive Systems

General Terms
Web,Search,Design

Keywords
media fragment,annotation,microdata,Google search

1. INTRODUCTION
The term “media fragment” refers to the inside content of

multimedia objects, such as a certain area within an image,
or a five minutes segment within a one-hour video. With
the rapid development of multimedia applications, such as
YouTube and Flickr, end users could easily upload, share
and tag the multimedia resources online. However, most
search results for multimedia resources still focus on the
whole resource level and media fragments are not fully in-
dexed yet. Multimedia resources are seldom displayed alone
on the Web page. Usually, a multimedia player is embedded
in the replay page (also called “landing page”) together with
all media fragments, metadata and annotations. Search en-
gines thus will not be able to distinguish which annotation is

Copyright is held by the author/owner(s).
WWW2012 Developer Track, April 18-20, 2012, Lyon, France.

related to which media fragment and it leads to the difficulty
of searching and reusing the inside content of multimedia.

The W3C Media Fragment Working Group has proposed
Media Fragment URI 1.0 (MFURI) [6], which defines hash
URI syntax to address media fragments from temporal, spa-
tial, track and named section dimensions. It has been stated
by Troncy et al. [6] that “enabling the addressing of media
fragments ultimately creates a means to attach annotations
to media fragments”. In this proposal, we introduce a model
to enable Google to index media fragments using related
annotations, so that they could be found by traditional key-
word search. This model uses MFURI syntax and Google’s
crawling infrastructure for Ajax applications. A demo is im-
plemented on top of the Synote system [3]. Synote is a Web
2.0 application, which allows users to embed audio-visual
resources from other domains and make synchronised anno-
tations. We mainly implement the temporal dimension for
audio-visual resources, but the concept could be easily ex-
tended to spatial and other dimensions defined in MFURI.
Some initial evaluation results have shown that the annota-
tions related to media fragments are indexed by Google and
users could play the media fragment directly from the links
provided by Google search results.

2. PROBLEM ANALYSIS
The online presence of media fragments is very poor at

the moment. This is partially because a large portion of
applications do not provide media fragments at all. The
tags, descriptions and other forms of annotations are on the
whole multimedia level. Another important reason is that
even though some applications provide synchronised anno-
tations, they are loaded together with the whole multime-
dia resource on the same logical page. This is reasonable
as it provides an interactive experience for users. For ex-
ample, TED Talks 1 and YouTube’s interactive transcript2

allow users to click on the transcript block and the media
player embedded on the page will start playing from that
time point.

This user-friendly function is not search-engine-friendly
for two reasons. Firstly, most search engines only fetch pages
as a direct response from the server. So any dynamically
generated content on the client-side is ignored. YouTube
load interactive transcript by Ajax, so the transcript will
not be indexed by Google from the replay page. TED does
not have this problem because the transcript is generated

1http://www.ted.com/talks
2http://goo.gl/t1nMj

http://www.ted.com/talks
http://goo.gl/t1nMj


Figure 1: Google Ajax Application Crawler

by server-side script. Secondly, as media fragments and an-
notations share the same HTML page with the whole multi-
media resource and annotations, search engines cannot find
a unique logical page for each media fragment. When a
keyword is searched, the search engine can only return the
whole page and users will lose track of which media fragment
is related to the keyword. This also causes accessibility prob-
lems for devices with low bandwidth, because much traffic
is wasted on downloading unnecessary data.

One solution to these two problems is slicing the whole
page into different pages according to media fragments, but
the interactive experience will be lost in that users cannot
watch different media fragments on the same page. The
acceptable solution for both multimedia applications and
end users must satisfy the following criteria:

• Keyword search should only return the documents di-
rectly related to the media fragments, i.e. all the con-
tent in the document should annotate this media frag-
ment. It is better if the media fragment could be high-
lighted in the search results.

• The interactive experience should be kept. But when
users click the link in the search result, the media frag-
ment corresponding to the link should be highlighted

• Few changes to the server are required

3. IMPLEMENTATION
Google has developed a framework to crawl Ajax applica-

tions (Figure 1). If the “hashbang” token (“#!”) is included
in the original URL3, Google crawler will know that this
page contains Ajax content. Then the crawler will request
“ugly URL”. On receiving this ”Ugly URL” request, the
server can return the snapshot page after the dynamic in-
formation is fully generated by javascript. The content in
the snapshot page will be indexed in for the original “pretty
URL”.

In this framework, the crawler does not care how the
server generates the snapshot page, so we make use of this

2http://goo.gl/dPc81
3The HTTP protocol and domain names will be ignored in
the URLs for short in this paper

framework by keeping two sets of pages. We do not discard
the existing replay pages, but we duplicate this page by cut-
ting it into many snapshot pages based on the time span de-
fined in “ escaped fragment ” parameter in the “ugly URL”.
Each snapshot page contains metadata and annotations only
related to the media fragments. The hash in MFURI syn-
tax, however, is replaced by hashbang as “#!” is the required
token by the crawler. When the request URL containing
“ escaped fragment ”, the server returns the snapshot page.
If not, the normal replay page will be returned.

Figure 2 explains how this model could be used to index
media fragments. As a pre-condition, the time information
must be available for the developers so that the MFURI can
be constructed. The returned page in step 4 only contains
keywords related to fragment “t=3,7”. In the Google in-
dex, the “pretty media fragment URLs” are associated with
the snapshot page. So what Google actually indexed is the
URL of the replay page with hashbang and MFURI syn-
tax attached. Step 8 still returns the whole page, but in
step 9, the fragment will be passed to the URL representing
the real location or the service which delivers the multime-
dia file. For example, if the request URL is example/re-
play/1#!t=3,7, the fragment “#t=3,7” will be attached at
the back of example2/1.ogv, which is the video embedded in
the replay page. Hashbang is not a valid syntax in MFURI
specification, so developers need to parse the information
in the hashbang URL before attaching the fragment to the
the URL of the actual multimedia file. Then we control the
embedded player to play the fragment from 3s to 7s using
javascript and the corresponding annotations are highlighted
straight away. In this case, step 6 will return the URL of the
media fragment instead of the replay page. This design not
only makes sure media fragments are indexed precisely with
the keywords related to it, but also preserves the existing
user interface and the interactive experience.

On the server side, necessary changes needs to be made.
The first one is the programme to detect“ escaped fragment ”
parameter in the request URL from Google and redirect it
to the snapshot generation programme, which is the second
programme we need to add to the server. The snapshot
page does not need to be user-friendly, but the metadata
and annotations related to the media fragment should be
presented in a well-structured manner. We also embed Mi-
crodata [2] defined in schema.org4, into the page. Each me-
dia fragment is defined as either “Audio” or “Video”, and the
annotations are defined as “keywords” and other properties
in schema.org.

The third component developers need to write is the pro-
gramme to highlight the corresponding media fragment when
the page is opened. For this demo, we developed Synote
Media Fragment Player5 (SMFP) to fulfil the visual output
defined in Media Fragment User Agent (UA) Test Cases6

on the temporal dimension of MFURI. MFURI should be
processed via HTTP protocol with the help of “smart user
agents”, “smart servers” and proxy caches [4]. Even though
some UAs support part of the functions7 defined in MFURI,
the general support for media fragment highlighting is very
limited. So we developed SMFP to play the temporal di-

4http://schema.org
5http://goo.gl/NO0t7
6http://goo.gl/yexpy
7https://bugzilla.mozilla.org/show_bug.cgi?id=648595

http://goo.gl/dPc81
http://schema.org
http://goo.gl/NO0t7
http://goo.gl/yexpy
https://bugzilla.mozilla.org/show_bug.cgi?id=648595


Figure 2: The model to improve media fragment presence based on Google crawler

mension of media fragments for different formats of video
and audio resources. In the future, if major browsers could
natively support the media fragment highlighting and re-
trieval defined in MFURI specification, it would not be nec-
essary for developers to implement this component. Except
for these changes, we also need to include the newly created
hashbang URLs in the sitemaps so that they could be easily
found out by Google.

4. EVALUATION AND DISCUSSION
We implemented the model demonstrated in Figure 2 in

Synote and pre-defined some media fragments and annota-
tions. Sitemaps containing URIs like replay/1#!t=3,7 have
been submitted to Google for indexing. To have a quick
evaluation of what Googlebot fetches from these URIs, we
submit several URIs into Google Web Master Tools8. The
result shows that on fetching this URL:

http://linkeddata.synote.org/synote/recording/replay/

36513#!t=00:00:01.000,00:00:14.000

The snapshot page is returned with annotations only related
to fragment “#t=00:00:01.000,00:00:14.000”. We also put
some Microdata in the snapshot page and the semantic in-
formation can be successfully recognised by Live Microdata9

and Linter Structured Data10. If the keyword “Terrace The-
ater”, for example, is searched in Google, the snapshot page
can be successfully found in the search results instead of the
whole replay page. When we click the link in search results,
the Synote Player page in Figure 3 will be opened and the
button in top-left corner indicates that a media fragment is
requested. On opening the page, the video will start play-
ing from 1s to 14s and the related annotation on the right
column will be highlighted.

As another example for evaluation, we search the sen-
tence “All kinds of conceptual things, they have names now
that start with HTTP” in Google. This sentence is included
in the transcript of the video resources for both TED Talks
and Synote. The first result in Figure 4 is from TED Talks.
Clicking on the link will open the replay page of the talk,
but you still need to manually find the sentence in the in-
teractive transcript. So even though the sentence logically

8http://www.google.com/webmasters/tools/
9http://foolip.org/microdatajs/live/

10http://linter.structured-data.org/

Figure 3: Screenshot of Synote replay page

annotates part of the video, the search engine still associates
it with the whole document, i.e. the replay page. The sec-
ond result in Figure 4 indicates that this sentence in Synote
is directly related to the fragment defined in the replay page.
On clicking this search result, the video embedded in the re-
play page will start playing from the start time of this media
fragment.

The main idea of this model is generating a set of search-
engine-friendly snapshot pages on the fly according to the
time span defined in the fragment of request URL. For ap-
plications heavily relied on Ajax or Flash, it is useful to keep
two sets of pages for both rich user interaction and search
engine optimisation (SEO). Considering Web Content Ac-
cessibility Guidelines11, it is also a good practice to provide
such snapshot pages because the interactive feature usually
is not accessible to screen readers and keyboard users since
it depends much on javascript.

This model relies on hashbang URLs, which has been
widely used in Facebook and Twitter to allow the index-
ing of Ajax content. But hashbang is claimed not to be a

11http://www.w3.org/TR/WCAG20/

http://www.google.com/webmasters/tools/
http://foolip.org/microdatajs/live/
http://linter.structured-data.org/
http://www.w3.org/TR/WCAG20/


Figure 4: Search results comparison between TED
Talks and Synote

good practice of URL design12 and it should be replaced
by HTML5 PushState13. Twitter recently also announced
that they would remove all the hashbang URLs14. In order
to use Google Ajax Application Crawler, we have to imple-
ment the hashbang URLs, but we also need to consider the
disadvantages of such URLs in the future work.

Another limitation of this model is that it only works for
Google and therefore further work is required to investigate
similar solutions for other search engines, such as Yahoo!
and Bing. The general solution of media fragment index-
ing might be embedding Rich Snippet [5], such as Micro-
data and RDFa [1], into the page so that search engines can
highlight them in the search results. But currently, major
search engines are still far from reaching an agreement on
the vocabularies to describe media fragments.

5. CONCLUSION
Media fragment is important on the Web as it describes

the inside content of multimedia resource. However, major
search engines currently are not able to index media frag-
ments using the related annotations. We analysed this prob-
lem from both multimedia application and search engine’s
point of views. The key problem is that media fragments
and annotations do not have their own page on the Web and
they share the same page as the parent resource. We devel-
oped a model, which uses MFURI syntax and Google Ajax
Application Crawler, to let Google index snapshot pages for
each media fragment. In this way, media fragments will
have their own links in the search results and on following
the links, users still visit the same replay pages as before.
We have evaluated the implementation and the result shows
that the media fragments could be indexed by Google. We
envision that by using this model, more and more media
fragments and annotations will be indexed and the search
for multimedia resources will be more efficient. The screen-
cast15 of this evaluation and the live demo of Synote16 are
available online.

6. REFERENCES
[1] B. Adida and M. Birbeck. RDFa Primer, Oct. 2008.

http://www.w3.org/TR/xhtml-rdfa-primer/.

12http://goo.gl/xfvwT
13http://diveintohtml5.info/history.html
14http://storify.com/timhaines/hashbang-conversation
15http://goo.gl/4zl1V
16http://linkeddata.synote.org/synote/

[2] I. Hickson. HTML Microdata, Feb. 2012.
http://dev.w3.org/html5/md/.

[3] Y. Li, M. Wald, G. Wills, S. Khoja, D. Millard,
J. Kajaba, P. Singh, and L. Gilbert. Synote:
development of a web-based tool for synchronized
annotations. New Review of Hypermedia and
Multimedia, 17(3):295–312, 2011.

[4] E. Mannens, D. Van Deursen, R. Troncy, S. Pfeiffer,
C. Parker, Y. Lafon, J. Jansen, M. Hausenblas, and
R. Van de Walle. A uri-based approach for addressing
fragments of media resources on the web. Multimedia
Tools and Applications, pages 1–25.
10.1007/s11042-010-0683-z.

[5] T. Steiner, R. Troncy, and M. Hausenblas. How Google
is using Linked Data Today and Vision For Tomorrow.
In S. Auer, S. Decker, and M. Hauswirth, editors,
Linked Data in the Future Internet 2010,
Ghent,Belgium, 2010.

[6] R. Troncy, E. Mannens, S. Pfeiffer, and D. V. Deursen.
Media fragments URI 1.0 (basic), Mar. 2012.
http://www.w3.org/TR/media-frags/.

http://goo.gl/xfvwT
http://diveintohtml5.info/history.html
http://storify.com/timhaines/hashbang-conversation
http://goo.gl/4zl1V
http://linkeddata.synote.org/synote/

	Introduction
	Problem Analysis
	Implementation
	Evaluation and Discussion
	Conclusion
	References

